<< back to Guides

AI Core Concepts (Part 8): Large Language Models (LLMs)

Large Language Models (LLMs) are deep learning models trained on massive corpora of text to understand and generate human-like language. They are used in chatbots, summarization, code generation, translation, and more.


1. What Makes a Language Model "Large"?

Popular examples:


2. Pretraining and Finetuning

Pretraining

Finetuning

Example: Finetuning a model using Hugging Face Trainer from transformers import AutoModelForCausalLM, Trainer, TrainingArguments

model = AutoModelForCausalLM.from_pretrained("gpt2") training_args = TrainingArguments(output_dir="./model", per_device_train_batch_size=4)

trainer = Trainer(model=model, args=training_args, train_dataset=my_dataset) trainer.train()


3. Inference and Text Generation

LLMs can complete, summarize, or translate text using autoregressive decoding.

Example: Using GPT-2 for text generation from transformers import pipeline

generator = pipeline("text-generation", model="gpt2") result = generator("The future of AI is", max_length=30) print(result[0]["generated_text"])


4. Applications of LLMs


5. LLM Challenges and Solutions

Challenge Solution/Technique
Hallucinations Post-processing, retrieval augmentation
Prompt sensitivity Prompt engineering, prompt tuning
Compute cost Quantization, LoRA, distillation
Privacy & bias issues RLHF, filtering datasets, transparency

6. Popular Tools and Frameworks


๐Ÿ“š Further Resources


<< back to Guides