<< back to Guides

AI Core Concepts (Part 20): AI Infrastructure

AI Infrastructure refers to the backend systems, tools, and environments that support the development, deployment, and scaling of AI models. For software engineers, mastering AI infra means enabling reliable, efficient, and production-ready AI applications.


1. Why AI Infrastructure Matters

Need Infrastructure Role
Model Training Access to GPUs/TPUs, data pipelines
Model Serving Fast, scalable inference APIs
Experimentation Version control, reproducibility
Monitoring Logging, performance metrics, alerts
Scalability Deploying across distributed environments
Cost Optimization Resource auto-scaling, serverless inference

2. Core Components of AI Infrastructure

1. Compute Resources

# Example: Provisioning a GPU instance with AWS CLI
aws ec2 run-instances \
  --image-id ami-xyz \
  --instance-type g4dn.xlarge \
  --key-name your-key \
  --count 1

2. Data Infrastructure

# Example: Airflow DAG for data preprocessing
from airflow import DAG
from airflow.operators.python_operator import PythonOperator

def preprocess():
    # Load, clean, transform data
    ...

dag = DAG('data_pipeline', ...)
preprocess_task = PythonOperator(task_id='preprocess', python_callable=preprocess, dag=dag)

3. Model Training Infrastructure

# Example: PyTorch DDP (Distributed Data Parallel)
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = DDP(model.to(device))

4. Model Deployment and Serving

# Example: Serving with FastAPI
from fastapi import FastAPI
import joblib

app = FastAPI()
model = joblib.load("model.pkl")

@app.get("/predict")
def predict(x: float):
    return {"prediction": model.predict([[x]])[0]}

5. Monitoring & Logging

# Example: Logging inference latency
import time
start = time.time()
prediction = model.predict(input_data)
duration = time.time() - start
logger.info(f"Inference took {duration:.2f} seconds")

6. Experiment Tracking

# Example: MLflow experiment tracking
import mlflow

with mlflow.start_run():
    mlflow.log_param("lr", 0.001)
    mlflow.log_metric("accuracy", 0.92)
    mlflow.sklearn.log_model(model, "model")

7. Model Versioning

# Example: DVC model tracking
dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "Track model with DVC"

3. Scalable Inference Patterns

Pattern Description
Batch Inference Run predictions on many records at once
Online Inference Serve individual predictions via API
Serverless Inference Scales to zero, cheaper
Streaming Predict from live data (Kafka, Flink)

4. Security and Compliance


5. Tools by Category

Category Tools
Training PyTorch, TensorFlow, JAX, Hugging Face
Deployment BentoML, MLflow, TorchServe, SageMaker
Orchestration Airflow, KubeFlow, Prefect
Monitoring Prometheus, Grafana, Arize, WhyLabs
Experiment Tracking Weights & Biases, Neptune, MLflow
Vector DBs FAISS, Pinecone, Weaviate, Qdrant

6. Infrastructure-as-Code Example (Terraform for GCP AI Platform)

resource "google_ai_platform_model" "example" {
  name        = "my_model"
  regions     = ["us-central1"]
  labels      = { team = "ai" }
}

📚 Further Resources


<< back to Guides