<< back to Guides
AI Core Concepts (Part 20): AI Infrastructure
AI Infrastructure refers to the backend systems, tools, and environments that support the development, deployment, and scaling of AI models. For software engineers, mastering AI infra means enabling reliable, efficient, and production-ready AI applications.
1. Why AI Infrastructure Matters
Need |
Infrastructure Role |
Model Training |
Access to GPUs/TPUs, data pipelines |
Model Serving |
Fast, scalable inference APIs |
Experimentation |
Version control, reproducibility |
Monitoring |
Logging, performance metrics, alerts |
Scalability |
Deploying across distributed environments |
Cost Optimization |
Resource auto-scaling, serverless inference |
2. Core Components of AI Infrastructure
1. Compute Resources
- GPUs (NVIDIA A100, V100), TPUs (Google)
- CPU for lightweight tasks
- On-premise, cloud (AWS, GCP, Azure), or hybrid
# Example: Provisioning a GPU instance with AWS CLI
aws ec2 run-instances \
--image-id ami-xyz \
--instance-type g4dn.xlarge \
--key-name your-key \
--count 1
2. Data Infrastructure
- Storage: S3, GCS, Azure Blob
- Preprocessing: Spark, Dask, Pandas
- ETL Pipelines: Airflow, Prefect, Dagster
# Example: Airflow DAG for data preprocessing
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
def preprocess():
# Load, clean, transform data
...
dag = DAG('data_pipeline', ...)
preprocess_task = PythonOperator(task_id='preprocess', python_callable=preprocess, dag=dag)
3. Model Training Infrastructure
- Frameworks: PyTorch, TensorFlow, JAX
- Distributed Training: Horovod, PyTorch DDP
- Resource Management: Kubernetes, Ray, Slurm
# Example: PyTorch DDP (Distributed Data Parallel)
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
dist.init_process_group("nccl", rank=rank, world_size=world_size)
model = DDP(model.to(device))
4. Model Deployment and Serving
- REST/gRPC APIs: FastAPI, Flask, Triton Inference Server
- Model Servers: TensorFlow Serving, TorchServe, BentoML, MLflow
- Containerization: Docker, Kubernetes
# Example: Serving with FastAPI
from fastapi import FastAPI
import joblib
app = FastAPI()
model = joblib.load("model.pkl")
@app.get("/predict")
def predict(x: float):
return {"prediction": model.predict([[x]])[0]}
5. Monitoring & Logging
- Tools: Prometheus, Grafana, Loki, Sentry
- Model Monitoring: Fiddler, WhyLabs, Arize, Evidently
- Track drift, latency, failed requests
# Example: Logging inference latency
import time
start = time.time()
prediction = model.predict(input_data)
duration = time.time() - start
logger.info(f"Inference took {duration:.2f} seconds")
6. Experiment Tracking
- Tools: MLflow, Weights & Biases, Neptune
- Track: metrics, hyperparameters, model artifacts, code versions
# Example: MLflow experiment tracking
import mlflow
with mlflow.start_run():
mlflow.log_param("lr", 0.001)
mlflow.log_metric("accuracy", 0.92)
mlflow.sklearn.log_model(model, "model")
7. Model Versioning
- DVC, MLflow Models, Hugging Face Model Hub
- Maintain reproducible snapshots of models + data
# Example: DVC model tracking
dvc add models/model.pkl
git add models/model.pkl.dvc
git commit -m "Track model with DVC"
3. Scalable Inference Patterns
Pattern |
Description |
Batch Inference |
Run predictions on many records at once |
Online Inference |
Serve individual predictions via API |
Serverless Inference |
Scales to zero, cheaper |
Streaming |
Predict from live data (Kafka, Flink) |
4. Security and Compliance
- Data encryption (in transit + at rest)
- Access control (IAM, service accounts)
- Model explainability (for regulated domains)
- Audit logging
5. Tools by Category
Category |
Tools |
Training |
PyTorch, TensorFlow, JAX, Hugging Face |
Deployment |
BentoML, MLflow, TorchServe, SageMaker |
Orchestration |
Airflow, KubeFlow, Prefect |
Monitoring |
Prometheus, Grafana, Arize, WhyLabs |
Experiment Tracking |
Weights & Biases, Neptune, MLflow |
Vector DBs |
FAISS, Pinecone, Weaviate, Qdrant |
6. Infrastructure-as-Code Example (Terraform for GCP AI Platform)
resource "google_ai_platform_model" "example" {
name = "my_model"
regions = ["us-central1"]
labels = { team = "ai" }
}
📚 Further Resources
<< back to Guides