<< back to Guides
<< back to Guides
Bonus: Retrieval-Augmented Generation (RAG) Architecture
RAG (Retrieval-Augmented Generation) combines information retrieval and language generation to produce more accurate, context-aware, and up-to-date outputs. It enhances LLMs by grounding their answers in external documents.
๐ง Why RAG?
Problem with LLMs | How RAG Helps |
---|---|
Hallucinations | Uses real documents as context |
Limited context window | Retrieves only the most relevant pieces |
Outdated knowledge | Can pull in current, dynamic data sources |
Inefficient fine-tuning | Uses search instead of retraining the model |
๐ High-Level RAG Flow
- User Query โ
- Retriever: Finds relevant docs from a knowledge base (vector DB, etc)
- Reader / Generator: LLM uses both query + retrieved docs to generate a grounded answer
[User Query]
โ
[Retriever] โโ [Vector DB / Corpus]
โ
[Context + Query]
โ
[LLM Generator (e.g. GPT, LLaMA)]
โ
[Answer]
๐ ๏ธ Core Components
1. Document Ingestion Pipeline
- Load raw docs (PDF, HTML, Notion, DB)
- Chunk + clean + embed them
- Store in vector database (e.g., FAISS, Pinecone)
from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
docs = WebBaseLoader("https://example.com/blog").load()
db = FAISS.from_documents(docs, OpenAIEmbeddings())
2. Retriever
- Converts query to embedding
- Finds top-k relevant documents
query = "What is RAG architecture?"
results = db.similarity_search(query, k=3)
3. Prompt + Generation
Combine retrieved documents and user query into a single prompt for the LLM.
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
qa = RetrievalQA.from_chain_type(
llm=ChatOpenAI(),
retriever=db.as_retriever()
)
response = qa.run("Explain Retrieval-Augmented Generation")
๐งฑ RAG Stack Example
Layer | Tool Example |
---|---|
Embedding | OpenAI, Cohere, SentenceTransformers |
Storage | FAISS, Weaviate, Pinecone, Qdrant |
LLM | GPT-4, LLaMA, Claude, Mistral |
Framework | LangChain, LlamaIndex, Haystack |
Frontend | Streamlit, Next.js, Gradio |
๐ Use Cases
- Chatbots with knowledge base grounding
- Legal, financial, or healthcare assistants
- R&D document search
- Internal Q&A for company wikis
- Search-augmented creative writing tools
โ ๏ธ Challenges & Tips
Challenge | Solution |
---|---|
Bad retrieval results | Improve chunking, embedding model, metadata filtering |
Context too large | Use summarization or reranking |
Slow retrieval | Use pre-computed, indexed vector DB |
Privacy / access | Add RBAC or hybrid RAG with permission-aware sources |
๐ง Advanced RAG Patterns
โณ๏ธ Multi-hop RAG
Chain multiple queries for reasoning across multiple docs.
๐งต RAG with Memory
Add chat history/context to RAG pipeline.
๐ค Agentic RAG
Use agents to run tools or fetch external resources beyond vector DB.
๐งช Evaluation of RAG
- Groundedness: Does the answer align with source docs?
- Faithfulness: No hallucinated claims?
- Latency: Time from query to generation
- Retrieval quality: Precision/recall of relevant passages
๐ Further Resources
<< back to Guides