<< back to Guides

Bonus: Retrieval-Augmented Generation (RAG) Architecture

RAG (Retrieval-Augmented Generation) combines information retrieval and language generation to produce more accurate, context-aware, and up-to-date outputs. It enhances LLMs by grounding their answers in external documents.


๐Ÿง  Why RAG?

Problem with LLMs How RAG Helps
Hallucinations Uses real documents as context
Limited context window Retrieves only the most relevant pieces
Outdated knowledge Can pull in current, dynamic data sources
Inefficient fine-tuning Uses search instead of retraining the model

๐Ÿ” High-Level RAG Flow

  1. User Query โ†’
  2. Retriever: Finds relevant docs from a knowledge base (vector DB, etc)
  3. Reader / Generator: LLM uses both query + retrieved docs to generate a grounded answer
[User Query]
     โ†“
[Retriever] โ†โ†’ [Vector DB / Corpus]
     โ†“
[Context + Query]
     โ†“
[LLM Generator (e.g. GPT, LLaMA)]
     โ†“
[Answer]

๐Ÿ› ๏ธ Core Components

1. Document Ingestion Pipeline

from langchain.document_loaders import WebBaseLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS

docs = WebBaseLoader("https://example.com/blog").load()
db = FAISS.from_documents(docs, OpenAIEmbeddings())

2. Retriever

query = "What is RAG architecture?"
results = db.similarity_search(query, k=3)

3. Prompt + Generation

Combine retrieved documents and user query into a single prompt for the LLM.

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI

qa = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(),
    retriever=db.as_retriever()
)

response = qa.run("Explain Retrieval-Augmented Generation")

๐Ÿงฑ RAG Stack Example

Layer Tool Example
Embedding OpenAI, Cohere, SentenceTransformers
Storage FAISS, Weaviate, Pinecone, Qdrant
LLM GPT-4, LLaMA, Claude, Mistral
Framework LangChain, LlamaIndex, Haystack
Frontend Streamlit, Next.js, Gradio

๐Ÿ” Use Cases


โš ๏ธ Challenges & Tips

Challenge Solution
Bad retrieval results Improve chunking, embedding model, metadata filtering
Context too large Use summarization or reranking
Slow retrieval Use pre-computed, indexed vector DB
Privacy / access Add RBAC or hybrid RAG with permission-aware sources

๐Ÿง  Advanced RAG Patterns

โœณ๏ธ Multi-hop RAG

Chain multiple queries for reasoning across multiple docs.

๐Ÿงต RAG with Memory

Add chat history/context to RAG pipeline.

๐Ÿค– Agentic RAG

Use agents to run tools or fetch external resources beyond vector DB.


๐Ÿงช Evaluation of RAG


๐Ÿ“š Further Resources


<< back to Guides