<< back to Guides

🧠 Deep Dive into Memcached

Memcached is a high-performance, distributed memory object caching system. It’s commonly used to reduce database load, speed up dynamic applications, and cache arbitrary data such as results of database calls, API calls, or page rendering.


πŸ“Œ What Is Memcached?


πŸš€ Use Cases


πŸ›  Architecture Overview


βš™οΈ Core Operations

Command Description
set Add a key-value pair
get Retrieve a value by key
delete Remove a key
add Only sets the key if it doesn’t exist
replace Replaces existing value
incr / decr For numeric counters
// Python Example with `pymemcache`
from pymemcache.client import base
client = base.Client(('localhost', 11211))
client.set('username_123', 'john')
client.get('username_123')  # returns b'john'

🧱 Data Storage Characteristics

// Set a key with 60s expiration
client.set('page_home', '<html>...</html>', expire=60)

⚑ Performance and Scaling

Horizontal Scaling

Memory Management


πŸ” Security Considerations

// Start Memcached with TCP only and limited IP binding
memcached -m 512 -p 11211 -U 0 -l 127.0.0.1

πŸ§ͺ Monitoring & Metrics

Monitor via:

Important metrics:


πŸ†š Memcached vs Redis

Feature Memcached Redis
Data Persistence ❌ No βœ… Yes
Advanced Data Types ❌ No βœ… Lists, Sets, Hashes
Pub/Sub, Streams ❌ No βœ… Yes
TTL Granularity Basic per-key TTL Fine-grained per key
Max Value Size ~1MB ~512MB (configurable)
Use Case Fit Simple, volatile cache Richer caching + logic

🧠 Best Practices


🧩 Alternatives & When to Use Memcached

Alternative When to Prefer
Redis You need persistence, pub/sub, complex structures
CDN For caching static web assets at global scale
Local cache For small, fast access within the same process

Use Memcached when:


πŸ“š Further Reading


<< back to Guides